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Data assimilation: general formulation
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Bayes theorem:
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velocity Solution is pdf!

Posterior NO INVERSION !!1



Parameter estimation:

~ plylo)p(o)

p(0ly) ()

with
y=H(0)+ ¢

Again, no inversion but a direct point-wise multiplication.



How is this used today in geosciences?

Present-day data-assimilation systems are based on
linearizations and state covariances are essential.

4DVar:
- smoother

- Gaussian pdf for initial state, observations (and
model errors)

- allows for nonlinear observation operators
- solves for posterior mode.
- needs good error covariance of initial state (B matrix)

- ‘no’ posterior error covariances



How is this used today in geosciences?

Representer method (PSAS):
- solves for posterior mode in observation space
(Ensemble) Kalman filter:
- assumes Gaussian pdf’s for the state,
- approximates posterior mean and covariance
- doesn’t minimize anything in nonlinear systems
- needs inflation (but see Mark Bocquet)

- heeds localisation

Combinations of these: hybrid methods (!!!)



Non-linear Data Assimilation

* Metropolis-Hastings
* Langevin sampling
* Hybrid Monte-Carlo

e Particle Filters/Smoothers

All try to sample from the posterior pdf, either the joint-in-time,
or the marginal. Only the particle filter/smoother does this
sequentially.



Nonlinear filtering: Particle filter

pla) = 3~ pole — )

_ plylz)p(x)
plaly) = 5 p(ylx)p(x) du
plxly) = Z w;0(x — ;)
with |, — plylei)
Z D p(y|z;)

the weights.




What are these weights?

* The weight w; is the normalised value of the
pdf of the observations given model state ;.

* For Gaussian distributed variables is is given
by:

w; X p(y|$z)
o exp |5 (y— H(x) B (y — H(z:)

* One can just calculate this value
 Thatis all !l



No explicit need for state covariances

 3DVar and 4DVar need a good error
covariance of the prior state estimate:

complicated

* The performance of Ensemble Kalman filters
relies on the quality of the sample covariance,
forcing artificial inflation and localisation.

* Particle filter doesn’t have this problem, but...



Standard Particle filter

Not very efficient !




A simple resampling scheme

1. Put all weights on the unit interval [0,1]:

0 M 1
w3 w4 w5 woewwad10

2. Draw a random number from U[0,1/N] (= U[1,1/10] in this case).
Put it on the unit interval: this is the first resampled particle.

0 M 1
w3 w4 w5 wewwad10

3. Add 1/N : this is the second resampled particle. Etc.

0 M 1
w3 wd  ws wewiadw10

In this example we choose old particle 1 three times, old particle
2 two times, old particle 3 two times etc.



A closer look at the weights |

Probability space in large-dimensional systems is
‘empty’: the curse of dimensionality
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A closer look at the weights Il

Assume particle 1 is at 0.1 standard deviations s of M
Independent observations.
Assume particle 2 is at 0.2 s of the M observations.

The weight of particle 1 will be

Wy X exp {—% (y — H(x;)) R (y — H(x))

= exp(—0.005M)

and particle 2 gives

s xexp -1 (= Hw) R (g — Ha)

5 = exp(—0.02M)




A closer look at the weights Il

The ratio of the weights is

2 _ eap(—0.015M)
wq

Take M=1000 to find

2 exp(—15) ~ 310"
w1

Conclusion: the number of independent observations is
responsible for the degeneracy in particle filters.



How can we make particle filters useful?

The joint-in-time prior pdf can be written as:

n—l) n—l)

p(a™, x — p(x"\m”_l)p(x

So the marginal prior pdf at time n becomes:

pa") = [ pla"la" " p(a" ") da!

We introduced the transition densities

p(a”™|z"")




Meaning of the transition densities

Stochastic model: — f(ZCn_l) 4 677,—1

Transition density: p(xn |xn—1) x p(ﬁn—l)

So, draw a sample from the model error pdf, and use that in
the stochastic model equations.

For a deterministic model this pdf is a delta function centered
around the the deterministic forward step.

For a Gaussian model error we find:

p(a"a" ) = N ("), Q)




Bayes Theorem and the proposal density

Bayes Theorem now becomes:

p(y"|x")p(a")
p(y)

p(y"|a") n| . .n—1 n—1 n—1
o el () da

p(x"y") =

Multiply and divide this expression by a proposal transition
density q:




The magic: the proposal density

We found:

plaly") = p(ZZSn) / q@(f;‘in; y)n>q(x”yxn1, y")p(x" ) da"

Note that the transition pdf q can be conditioned on the future
observation y .

The trick will be to draw samples from transition density g
instead of from transition density p.




How to use this in practice?

Start with the particle description of the conditional pdf at n-17
(assuming equal weight particles):

pla" ) = =Y b =)

Leading to:
n|.n p(yn‘wn) 1 al p(xn‘z?—l) x| . .n—1 n
p(x"|y") = — q(z* |z, y")
p(y) N;C](mn‘xi layn)




Practice Il

For each particle at time n-1 draw a sample from the proposal
transition density g, to find:

”\fL‘ ) plaj|a] ™)
p(z"[y") T 0" — o)
; (xz ‘xz 17/yn)
Which can be rewritten as: p(x"|y") Z w;o(x" — )

g
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What is the proposal transition density?

The proposal transition density is related to a proposed model.
In theory, this can be any model!

For instance, add a nudging term and change random forcing:

= )+ 0 K (Y - Ha )

Or, run a 4D-Var on each particle. This is a special 4D-Var:
- initial condition is fixed

- model error essential

- needs extra random forcing (perhaps perturbing obs?)



How to calculate p/qg?

Let’'s assume p(az‘” |£En

=N (f@"),Q)

Since x/" and x/-" are known from the proposed model we can

calculate directly:

1
n|,.n—1 n
plai|ai™") o exp 5 (377, ~

Flarh) Q@7 (ah = flal

1))]

Similarly, for the proposal transition density:

1 -

(el y") ox exp |~

n=1T 1 ]




Algorithm

Generate initial set of particles

Run proposed model conditioned on next
observation

Accumulate proposal density weights p/q
Calculate likelihood weights

Calculate full weights and resample

Note, the original model is never used directly.



Particle filter with
proposal transition
density




However: degeneracy

For large-scale problems with lots of
observations this method is still degenerate:

Only a few particles get high weights; the other
weights are negligibly small.



Recent ideas

‘Optimal’ proposal transition density: is not
optimal. This method is explored by Chorin and Tu
(2009), and Miller (the ‘Berkeley group’).

Other particle filters use interpolation (Anderson,
2010; Majda and Harlim, 2011), can give rise to
balance issues. Proposal not used (yet).

Briggs (2011) explores a spatial marginal
smoother at analysis time. Needs copula for joint
pdf, chosen as an elliptical density.

Can we do better?



Almost equal weights |

1. We know:

p(y"|x?)  plaiap™)
p(y™) qla?|af ™" y)

2. Write down expression for each weight ignoring g for now:

7: —

wioc wf e =5 (a = fr ) Q@ (= far )
— S = HED) R " — HT)

3. When H is linear this is a quadratic function in x/
for each particle. Otherwise linearize.




Almost Equal weights Il

4. Determine a target weight

— 10g w;

Target weight




Almost equal weights Il

5. Determine corresponding model states, infinite number of
solutions.

target weight

weight contour

Determine «v at crossing of line with target weight contour in:
) = fal7) +aK (y" — Hf(a]™))

with K =QH'(HQH" + R)™!




Almost equal weights IV

6. The previous is the deterministic part of the proposal density.

The stochastic part of g should not be Gaussian because we divide
by g, so an unlikely value for the random vector 3 'will resultin a
huge weight:

_p("=7)  plaflai)
p(y™) qlap|a;™" y)

A uniform density will leave the weights unchanged, but has limited
support.

Wy

Hence we choose 37"~ 'from a mixture density:

~ X with

p(ﬁf—l) X (1 o CL)U[—b, b] T aN(Oa Q) a,b,Q small




Almost equal weights V

The full scheme is now:

Use modified model up to last time step
Set target weight (e.g. 80%)

Calculate deterministic moves:

) = flar ) +aK (y — Hf(a™))
Determine stochastic move

A

p(37~") o< (1 — a)U[=b,b] + aN(0, Q)
Calculate new weights and resample ‘lost’
particles




Conclusions

* Particle filters do not need state covariances.
« Observations do not have to be perturbed.

« Degeneracy is related to number of observations, not to
size of the state space.

* Proposal density allows enormous freedom

» Almost-equal-weight scheme is scalable => high-
dimensional problems.

* Other efficient schemes are being derived.



We need more people !

* |[n Reading only we expect to have 10 new
PDRA positions available in the this year

e \We also have PhD vacancies

e And we still have room in the
Data Assimilation and Inverse Methods

In Geosciences MSc program



Gaussian-peak weight scheme

The weights are given by:

w; —

p(y"|x})  p(

LI

py™) qla?|a? ™" ym)

and our goal is to make these weights almost equal by choosing
a good proposal density, and a natural limit for N --> infinity.

We start by writing




Which can be rewritten as (completing the square on x ):

~2log (p(ylai)p(a7|ai ™)) o< (a7 = ma)" P~" (o} — mi) + ¢

With the constant
oi=(y— Hf(x}™") (HQH" + R)™ (y — Hf (2} "))

Write the proposal transition density as:

A

n n— n n T - n
—2log (C](sz 27y )) o () —mi)" Q' (x] —my) + o

So we draw samples from this Gaussian density.
The normalisation of g leads to the relation

Qil'* o< exp[— o]




To control the weights write:

—21log (p(yla)p(ay |}

D) o< (af —m)" P (@] —mi) + 6

as

T

his is g

N

~210g (plyla?p(e i) o (i

+ (7

To find weights:

[ 1
w; X eXp |—=

(a = mi) S7

2

S (@ = ma) 57 (@ = my)

And a relation between the covariances:

P =QiQ;+ S;)™"S,




The final idea...

Choose S, >> @Z "

| Qi
Leadingto (); =~ P / S

[

J\ .

So, the idea is to draw from N(O, é\),) and the weights come
out as drawn from N(0,S)).




Example: one step, with equal
weight ensemble at time n-1

* 400 dimensional system, Q = 0.5
» 200 observations, sigma = 0.1
* 10 particles
* Four Particle filters:
- Standard PF
- ‘Optimal’ proposal density
- Almost equal weight scheme
- Gaussian-peak weight scheme
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Performance measures

1

Effective ensemble size Neff — <N 5

2 el W;
Filter: Squared difference from truth: Effective ensemble size:
PF standard error 1.3931 1
PF-'optimal’ error 0.10889 1
PF-Almost equal error 0.073509 8.8
PF-Gaussian Peak error 0.083328 94

‘Optimal’ proposal density has no pdf information,
new schemes performing well.



